加入收藏 | 设为首页 | 会员中心 | 我要投稿 源码网 (https://www.900php.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 运营中心 > 交互 > 正文

如何利用图卷积网络对图进行深度学习(下)

发布时间:2020-01-29 02:14:52 所属栏目:交互 来源:站长网
导读:前文回顾:如何利用图卷积网络对图进行深度学习(上) 把所有的东西放在一起 我们现在结合了自循环和规范化技巧。此外,我们将重新引入我们先前丢弃的权重和激活函数,以简化讨论。 把权重加回来 首先要做的是计算权重。注意,这里D_hat是A_hat = A + I的

前文回顾:如何利用图卷积网络对图进行深度学习(上)

把所有的东西放在一起

我们现在结合了自循环和规范化技巧。此外,我们将重新引入我们先前丢弃的权重和激活函数,以简化讨论。

把权重加回来

首先要做的是计算权重。注意,这里D_hat是A_hat = A + I的次数矩阵,即,具有强制自循环的A的度矩阵。

In [45]: W = np.matrix([
             [1, -1],
             [-1, 1]
         ])
         D_hat**-1 * A_hat * X * W
Out[45]: matrix([
            [ 1., -1.],
            [ 4., -4.],
            [ 2., -2.],
            [ 5., -5.]
        ])

如果我们想降低输出特征表示的维数,我们可以减小权重矩阵W的大小:

In [46]: W = np.matrix([
             [1],
             [-1]
         ])
         D_hat**-1 * A_hat * X * W
Out[46]: matrix([[1.],
        [4.],
        [2.],
        [5.]]
)

添加激活函数

我们选择保留特征表示的维数,并应用ReLU激活函数。

In [51]: W = np.matrix([
             [1, -1],
             [-1, 1]
         ])
         relu(D_hat**-1 * A_hat * X * W)
Out[51]: matrix([[1., 0.],
        [4., 0.],
        [2., 0.],
        [5., 0.]])

 

瞧!一个完整的隐含层与邻接矩阵,输入特征,权值和激活功能!

回到现实

现在,最后,我们可以将图卷积网络应用于实图。我将向您展示如何生成我们在文章早期看到的功能表示。

Zachary空手道俱乐部

Zachary空手道俱乐部是一个常用的社交网络,其中的节点代表空手道俱乐部的成员,并边缘他们的相互关系。在空手道俱乐部学习时,管理者和教练发生了冲突,导致俱乐部一分为二。下图显示了网络的图形表示,节点根据俱乐部的哪个部分进行标记。管理员和讲师分别标有“A”和“I”。

如何利用图卷积网络对图进行深度学习(下)

Zachary空手道俱乐部

建立GCN

现在让我们建立图卷积网络。我们实际上不会训练网络,只是随机初始化它,以生成我们在本文开头看到的特性表示。我们将使用networkx,它有一个容易获得的俱乐部的图形表示,并计算A_hat和D_hat矩阵。

from networkx import karate_club_graph, to_numpy_matrix

zkc = karate_club_graph()
order = sorted(list(zkc.nodes()))

A = to_numpy_matrix(zkc, nodelist=order)
I = np.eye(zkc.number_of_nodes())

A_hat = A + I
D_hat = np.array(np.sum(A_hat, axis=0))[0]
D_hat = np.matrix(np.diag(D_hat))

接下来,我们将随机初始化权值。

W_1 = np.random.normal(
    loc=0, scale=1, size=(zkc.number_of_nodes(), 4))
W_2 = np.random.normal(
    loc=0, size=(W_1.shape[1], 2))

堆叠GCN层。这里我们只使用身份矩阵作为特征表示,即每个节点被表示为一个热编码的分类变量。

def gcn_layer(A_hat, D_hat, X, W):
    return relu(D_hat**-1 * A_hat * X * W)
H_1 = gcn_layer(A_hat, D_hat, I, W_1)
H_2 = gcn_layer(A_hat, D_hat, H_1, W_2)
output = H_2

 

我们提取特征表示。

feature_representations = {
    node: np.array(output)[node]
    for node in zkc.nodes()}

瞧!将Zachary空手道俱乐部的社区很好地分隔开的特征表示。我们还没开始训练呢!

如何利用图卷积网络对图进行深度学习(下)

Zachary空手道俱乐部节点的特征表示

我应该注意的是,对于这个例子,随机初始化的权重很可能在X或Y轴上给出0个值作为Relu函数的结果,因此需要几个随机初始化来产生上面的图。

结论

在这篇文章中,我对图卷积网络做了一个高级的介绍,并说明了GCN中每一层节点的特征表示是如何基于其邻域的集合的。我们看到了如何使用numpy来构建这些网络,以及它们是多么强大:即使是随机初始化的GCNs也可以在Zachary的空手道俱乐部中社区分离。

参考文献

[1] Thomas Kipf关于图形卷积网络的博客文章。

[2] 论文Thomas-Kipf和Max-Welling将图卷积网络称为半监督分类。

原文链接:https://towardsdatascience.com/how-to-do-deep-learning-on-graphs-with-graph-convolutional-networks-7d2250723780

(编辑:源码网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读