聊一聊几款流行监控系统,你知道几个?
针对每个调用的动作,Sleuth 都做了标示如下:
实际上 Sleuth 就是通过上述方式把每次请求记录一个统一的 Trace ID,每个请求的详细步骤记作 Span ID。 每次发起请求或者接受请求的状态分别记录成 Server Received,Client Sent,Server Sent,Client Received 四种状态来完成这个服务调用链路的跟踪的。 Sleuth 服务调用追踪图例 在调用服务的链路上每个被调用的服务节点都会通过 Parent ID 来记录发起调用服务的 Span ID,由于 Span ID 是唯一确认最小服务单元的,所以知道了 Parent 的 Span ID 也就知道了谁调用自己了。 度量类 实现了时序数据库(TimeSeriesData,TSD)的监控方案。实际上就是记录一串以时间为维度的数据,然后再通过聚合运算,查看指标数据和指标趋势。说白了,就是描述某个被测主体在一段时间内的测量值变化(度量)。 由于 IT 基础设施,运维监控和互联网监控的特性,这种方式被广泛应用。一般对时序数据进行建模分为三个部分,分别是:主体,时间点和测量值。 通过这个例子来看一下,时序数据库的数学模型,例如:需要监控服务器的 In/Out 平均流量:
时序数据库数据模型图例 时序数据库的存储原理,关系型数据库存储采用的是 B tree,虽然降低了数据查询的磁盘寻道时间,但是无法解决大量数据写入时的磁盘效率。 由于监控系统的应用场景,经常会遇到大批量的数据写入,所以我们会选择 LSMtree(Log Structured Merge Tree)存储时序数据库。 LSMtree(Log Structured Merge Tree),从字面意义上理解,记录的数据按照日志结构(Log Structured)追加到系统中,然后通过合并树(Merge Tree)的方式将其合并。 来看一个 LevelDB 的例子,方便我们理解,LSM-tree 被分成三种文件:
LSMtree LevelDB 存储示意图 LSMtree 写入流程:
每层的所有文件总大小是有限制的(8MB,10MB,100MB… 1TB)。从 L1 层往后,每下一层容量增大十倍。
如此这般上层的数据都是较新的数据,查询可以从上层开始查找,依次往下,并且这些数据都是按照时间序列存放的。 监控系统的分层 谈完了监控系统的分类,再来聊聊监控系统的分层。用户请求到数据返回,经历系统中的层层关卡。 监控系统分层示意图 (编辑:源码网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |